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[1] The upper soil horizons of many modern and ancient soils are enriched in fine-grained
pedogenic ferrimagnetic minerals. We use three grain-size- and concentration-dependent
proxies (anhysteretic remanent magnetization/isothermal remanent magnetization ratios,
coercivity spectra derived from alternating field demagnetization of saturation isothermal
remanent magnetization and hysteresis properties) to quantify the abundance and grain
size of the pedogenic magnetic component. Our analyses of modern loessic soils from the
midwestern United States show that relatively small additions (2—10 vol % of the total
ferrimagnetic component) of fine-grained (coarse superparamagnetic to fine pseudosingle
domain) magnetite or maghemite are sufficient to explain the changes in concentration and
grain-size-dependent properties observed in the upper soil horizons. Furthermore, the
pedogenic components of all studied sites display a narrow range of magnetic properties,
which argues for a common origin of these particles over a wide range of climatic

conditions.
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1. Introduction

[2] The upper horizons of many modern and buried soils
have higher concentrations of ferrimagnetic minerals than
the parent material from which they were originally derived.
This change in magnetic properties (magnetic enhancement)
was recognized early on [e.g., Le Borgne, 1955, 1960;
Mullins, 1977, and references therein] and subsequent
studies have documented magnetic enhancement in many
loessic soils that developed under temperate climatic con-
ditions [e.g., Feng et al., 1994; Forster and Heller, 1997;
Heller and Liu, 1984; Kukla et al., 1988; Maher, 1986;
Ozdemir and Banerjee, 1982]. Building on these findings,
numerous studies [e.g., Banerjee, 1994; Begét and Hawkins,
1989; Heller and Liu, 1986; Kukla, 1988; Maher and
Thompson, 1992; Maher et al., 1994; Oches and Banerjee,
1996] suggest the use of soil magnetic properties as pale-
oclimatic or paleoenvironmental proxies.

[3] The pathways of pedogenic magnetite/maghemite
formation are still under discussion, and several biotic and
abiotic processes have been suggested [e.g., Dearing et al.,
1997; Guyodo et al., 2006; Kletetschka and Banerjee, 1995;
Kukla, 1988; Lu et al., 2000; Maher and Taylor, 1988;
Mullins, 1977; Schwertmann, 1988; Singer and Fine, 1989].
In most studies magnetic enhancement is due to the neo-
formation of strongly magnetic ferrimagnetic minerals, such
as magnetite or maghemite [Evans and Heller, 1994; Maher
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and Taylor, 1988]. This interpretation of magnetic enhance-
ment is based on the observation of mineralogical changes
(toward magnetite or maghemite) [e.g., Evans and Heller,
1994] and a shift to finer magnetic grain sizes [e.g., Zhou et
al., 1990]. The pedogenic magnetic component is consid-
ered to extend from the single-domain (SD ~0.1-0.01 pm)
into the superparamagnetic (SP < 0.01 pm) grain size range
[e.g., Heller and Evans, 1995; Maher, 1998, and references
therein; Maher and Taylor, 1988]. These grain size esti-
mates are based on increases in the ratio of anhysteretic
remanent magnetization (ARM) to isothermal remanent
magnetization (IRM), an indicator for the relative increase
in small SD particles, as well as elevated values of frequency-
dependent susceptibility (yrp), a proxy for the presence
of ultrafine superparamagnetic particles. Small magnetic
particles have been extracted from soils and have been
investigated using electron microscopy by Maher et al.
[1999], who produced similar particles under soil-like con-
ditions [Taylor et al., 1987]. Measurements of the time
dependence of IRM acquisition [Worm, 1999] also confirm
the presence of ultrafine magnetic grains straddling the SD-
SP boundary in magnetically enhanced soil horizons (T. A.
Machac et al., Time dependent IRM acquisition as a tool to
quantify the abundance of ultrafine superparamagnetic
magnetite in loessic soils, submitted to Geophysical Journal
International, 2006, hereinafter referred to as Machac et al.,
submitted manuscript, 2006) and a recent study by Liu et al.
[2005] quantified the grain size distribution of these super-
paramagnetic particles using the temperature dependence of
Xrp- The admixture of both SP and SD particles leads to
increases in magnetic susceptibility, primarily driven by SP
grains, and remanence parameters due to the formation of
larger SD particles.
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[4] In his modeling of hysteresis parameters, however,
Dunlop [2002a, 2002b] found little evidence for the pres-
ence of ultrafine SP particles in Chinese paleosol horizons.
Furthermore, many well-developed modern loessic soils in
the midwestern United States display two to threefold
increases in IRM or magnetic susceptibility [e.g., Geiss
and Zanner, 2006; Geiss et al., 2004] which suggests a
significant addition of ferrimagnetic particles to the mag-
netically enhanced horizons. This addition of pedogenic
remanence carrying ferrimagnets results in increases in
ARM/IRM ratios (up to 0.1, but generally much lower)
and ygp values (generally <5%), which is modest compared
to other sediments. In this paper we attempt to quantify the
abundance of fine-grained (SD and SP) pedogenic ferri-
magnetic minerals and address the following questions:

[5] 1. Can we obtain quantitative estimates of the abun-
dance of pedogenically produced, ferrimagnets that are
thermally stable at room temperature using common rock
magnetic techniques? If so, are the results for the various
techniques consistent, and how much of a fine-grained
pedogenic component is required to produce the observed
magnetic signal?

[6] 2. Is it possible to constrain the particle size distribu-
tion of the pedogenic component, and are the magnetic
properties of this component site specific or relatively
uniform between sites?

[7] Several authors have employed two-component mix-
ing models to quantify the influence of the magnetic
component on the rock magnetic signal or to directly
quantify the amount of ferrimagnetic minerals produced
during pedogenesis. Heller et al. [1993] used a combination
of magnetic susceptibility data and '’Be fluxes to recon-
struct susceptibility fluxes for locations on the Chinese loess
plateau during periods of loess deposition and soil forma-
tion. However, since magnetic susceptibility does not de-
pend linearly on the concentration of magnetic minerals the
authors did not attempt to quantify the amount of magnetite
produced in soil horizons. Forster and Heller [1997] used a
two end-member model to interpret hysteresis data. They
found that loess paleosol sequences follow distinct magnetic
enhancement paths but, again, did not attempt to quantify
the amount of the pedogenically produced magnetic com-
ponent. Evans and Heller [1994] employed, among other
magnetic techniques, a simple analysis of IRM acquisition
curves and found that pedogenic magnetic minerals across
the Chinese loess plateau possess rather uniform magnetic
properties and that relatively small amounts of pedogenic
magnetite (0.5 vol % of the sample) can explain the observed
differences between paleosols and loess. Stockhausen
[1998], Kruiver et al. [2001], and Heslop et al. [2002]
developed more sophisticated techniques for the interpreta-
tion and unmixing of IRM acquisition curves based on
cumulative log-Gaussian (CLG) distributions [Robertson
and France, 1994] and applied their techniques to marine
sediments [Kruiver and Passier, 2001], late Miocene red
beds [Grygar et al., 2003] and loess deposits [Spassov et al.,
2003]. Theoretical considerations by Heslop et al. [2004]
showed that magnetic interactions can lead to a skewing of
the coercivity distribution, which is incorporated in a more
sophisticated unmixing algorithm devised by Eg/i [2003],
who later analyzed a large number of natural samples [Egli,
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2004] and extracted coercivity parameters that are charac-
teristic for a variety of magnetic components.

[8] In our study we focused on well-characterized modern
soil profiles developed in loess in the midwestern United
States [Geiss and Zanner, 2006; Geiss et al., 2004] and
evaluated three sets of grain-size- or coercivity-dependent
magnetic parameters which we evaluated with either exist-
ing or newly developed two-component mixing models:

[v9] 1. The ratio of ARM/IRM is a rapidly measured
parameter that reflects the relative abundance of SD par-
ticles. We developed a simple two-component mixing
model to quantitatively interpret ARM/IRM rations in terms
of SD concentrations.

[10] 2. Hysteresis parameters, especially a plot of satura-
tion remanence/saturation magnetization (J¢/Js) versus co-
ercivity of remanence/coercive force (B./B.) (Day plot)
[Day et al., 1977] are often used to estimate changes in bulk
magnetic grain size. We apply a model developed by
Dunlop [2002a] and attempt to quantify the addition of
SD grains to the magnetically enhanced soil horizons.

[11] 3. The results of these two models are compared to
alternating field demagnetization curves, which were fitted
to cumulative lognormal distributions to isolate pedogenic
and background components.

[12] Together with a careful magnetic characterization of
the studied soil profiles, the answers to these questions
might constrain the pathways of magnetic enhancement
and improve our understanding of the links between soil-
forming factors and the soil magnetic signal, a vital pre-
requisite for using magnetic parameters as proxies for past
environmental conditions.

2. Methods
2.1. Site Selection

[13] We studied modern soil profiles that developed in
Peoria loess and are relatively undisturbed by recent human
activity and erosion. Site selection and initial pedologic and
magnetic analyses are described in detail by Geiss and
Zanner [2006]. All our sites are well-drained mollosols that
formed in loess in stable upland positions. Miriam Cemetery
(MIR 04-A) is located on an upland loess plain in SW
Nebraska (41.01°N, 100.66°W). The presettlement vegeta-
tion was shortgrass prairie, the mean annual precipitation at
the site is 490 mm/yr. Prairie Pines (PRA 02-A) is located
on a piece of native tallgrass prairie near Lincoln, Nebraska
(40.84°N, 96.56°W). The soil developed in gently rolling
uplands, the mean annual precipitation is 720 mm/yr. Mount
Calvary Cemetery (MTC 03-A) is located in the Iowa loess
hills (40.87°N, 95.42°W), and the sampled soil developed in
a gently rolling upland surface. The mean annual precipi-
tation at the site is 840 mm/yr. Honey Creek Conservation
Area (HON 03-A) is located in Central Missouri on the
Missouri loess bluffs (39.95°N, 94.97°W). The core was
taken from a wooded, level upland area. The mean annual
precipitation of the site is 910 mm/yr. Davisdale Conserva-
tion Area (DAV 03-A) is located 5 km north of the Missouri
River (39.04°N, 92.63°W). The soil here developed in loess
on forested uplands. Mean annual precipitation of the site is
970 mm/yr. The locations of the sites discussed in this
study, as well as the remaining sites of our transect are
shown in Figure 1.
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Map of all sites in our soil transect across Nebraska, lowa, and Missouri. Sites discussed in

this study are indicated (solid circles) and labeled MIR, Miriam cemetery; PRA, Prairie Pines; MTC,
Mount Calvary cemetery; HON, Honey Creek conservation area; DAV, Davisdale Conservation Area.

2.2. Sample Preparation

[14] All sites were sampled using a truck-mounted hy-
draulic soil probe equipped with a 3 in (7.5 cm) diameter
core barrel. Cores were described using standard Natural
Resources Conservation Service terminology [Soil Survey
Division Staff, 1993] and subsampled into small plastic bags
in the field. The sampling interval was 5 cm for horizons
that showed soil development and 10 cm for C horizon
material. For further magnetic analyses, samples were air
dried, gently crushed by hand, passed through a 2 mm sieve
to remove root fragments, homogenized and filled into
weakly diamagnetic plastic boxes of 5.3 cm® volume. For
low-temperature analyses a smaller amount of sample
(approximately 200 mg) was filled in a polycarbonate
capsule and mounted on a weakly diamagnetic drinking
straw. All magnetic analyses were performed on bulk
samples.

2.3. Remanence Parameters

[15] ARM was acquired in a peak alternating field of
100 mT and a 50 uT bias field, IRM was acquired in a
100 mT DC field. Both remanence parameters were
measured using a 2G cryogenic magnetometer (model
706-R) at the Institute for Rock Magnetism at the Univer-
sity of Minnesota. Alternating field (AF) demagnetization
curves were measured for a selected subset of samples.
These samples acquired an IRM in a pulsed field of 2.5 T
imparted by a ASC Scientific IM-10-30 pulse magnetizer,
followed by AF demagnetization up to a peak field of
300 mT using a Magnon International AFD-300 demag-
netizer. Remanence values were measured using an
AGICO JR-6 spinner magnetometer.

2.4. Hysteresis Loops

[16] Hysteresis loops were measured using a Princeton
Applied Research vibrating sample magnetometer, modified
by the Institute for Rock Magnetism. The peak field was
1.25 T, and the measurement included the determination of
the coercivity of remanence (By,).

2.5. Frequency-Dependent Susceptibility

[17] Frequency-dependent susceptibility (xrp) was mea-
sured for a few samples to estimate the relative abundance
of SP particles. These measurements were performed using
a modified Bartington MS2b dual frequency sensor at
frequencies of 470 Hz (xir) and 4700 Hz (xpnp) and Xpp
was calculated as

Xy 7 X 100 (1)
Xy

Xrp =

High- and low-frequency measurements were repeated five
times, which allowed which allowed us to estimate an error
for the reported values of xgp.

2.6. Data Analysis

[18] We developed a simple, two-component mixing
model to estimate fine (SD) and coarse (pseudo-single
domain (PSD), multidomain (MD)) fractions based on
ARM/IRM ratios. Assuming that ARM and IRM are
determined by these two fractions we can write

IRM
ARM

IRMgp + IRMyp =
ARMgp + ARMyp =

Jsaispfsp +Jsanp (1 — fsp)
Jsaaspfsp + Jsaamp (1 — fsp)

(2)
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Figure 2. Scatterplot of Jg values simulated through ARM/IRM two-component mixing model versus
Js values obtained from hysteresis data. The remanence acquisition parameters used in the model are

listed in Table 1.

where ARM (IRM)sp (vpy is the component of ARM (IRM)
due to SD and MD (includes PSD and MD) particles,
respectively; fsp is the abundance of SD particles (ranging
from 0 to 1), aasp is the ARM acquisition efficiency for SD
particles, aanp is the ARM acquisition efficiency for MD
particles. ajsp and apyp are the IRM acquisition efficien-
cies for SD and MD particles, respectively. The two
equations for IRM and ARM can be solved for fsp and yield

IRMQAMD — ARMOLIMD
feo = 3)
IRM(aamp — aasp) + ARM(aisp — aqup)

[19] The IRM acquisition efficiencies aysp and apyp are
relatively well constrained, where aysp = Ji¢/Js = 0.5 and
amnp < 0.05 [Day et al., 1977]. ARM acquisition efficien-
cies are known to a lesser extent, but experience from lake
sediments and soils has shown that for sediment dominated
by coarse grained MD and PSD ferrimagnets ARM/IRM =~

0.01, while lake sediments with high concentrations of SD
particles can reach ARM/IRM ratios up to 0.15-0.20 [e.g.,
Geiss et al., 2003]. The observed range of ARM/IRM ratios
may serve as a constraint for ARM acquisition efficiencies.

[20] It should be noted that equation (3) is independent of
Js, which can be used to test the validity of our model by
predicting Jg via equation (2) and comparing it to Jg
obtained from hysteresis measurements. This comparison
serves as an additional constraint for the ARM and IRM
acquisition efficiencies.

[21] Hysteresis data were plotted on a diagram of satura-
tion remanent magnetization/saturation magnetization (J./
J) versus coercivity of remanence/coercive force (B/B.)
(Day diagram [Day et al., 1977]), and we used the mixing
models of Dunlop [2002a] for (P)SD-MD and SP-MD
mixtures to interpret our data. Our samples plot closely
toward the MD field, and the resulting mixing lines are
indistinguishable for SD-MD and SP-MD mixtures. With
good evidence for the presence of SD particles in the

Figure 3. Magnetic properties for site MIR 04-A (Miriam Cemetery). (a) Unconstrained CLG analysis of IRM
demagnetization curves for site MIR 04-A. (top) Coercivity spectrum for topmost sample (solid circles), the two CLG
components (pedogenic, solid curve; background, dashed curve), and the sum of the two components (shaded curve) are
shown. Vertical scale of all gradient data is constant throughout Figures 3—6 and is shown for the topmost sample only. For
clarity, only the two modeled components are shown for the remaining samples of the soil profile. (b) Constrained CLG
analysis for the same samples as shown in Figure 3a. Gradient data for all samples (solid circles) and total results of the
unconstrained (shaded curve) and constrained (solid curve) CLG modeling are shown. (¢) ARM/IRM ratios shown for
comparison with CLG analyses. The table lists the abundance estimates for the pedogenic component f;,.q as a fraction of
the total remanence carrying ferrimagnetic component. Our estimates are based on the listed magnetic grain size proxies.

For further, information see text.
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magnetically enhanced soil horizons we limited ourselves to
(P)SD-MD mixing models.

[22] To measure coercivity spectra, samples acquired a
saturation isothermal remanent magnetization (SIRM) in a
pulsed field of 2.5 T and were then subjected to stepwise AF
demagnetization. The derivatives of the AF demagnetiza-
tion curves were fitted to cumulative log-Gaussian distribu-
tions (CLG) [Robertson and France, 1994; Stockhausen,
1998] rather than using the more elaborate distribution
suggested by Egli [2004].

(log B — log Bh)*
2Dp?

CLG(B, M, Bh,Dp) = - (4)

M e
X]
DpV2rw P

The use of mathematically simpler CLGs led to robust fit
results without the need for any smoothing algorithm. The
results were easily interpreted in terms of log mean
coercivity (log Bh), where Bh is given in mT, distribution
width Dp, and saturation remanence M. CLG fitting was
accomplished using a simple fitting program written in
Mathematica. To estimate the error of our fit parameters, we
applied a bootstrapping algorithm, randomly dropping 10%
of the demagnetization data before each fitting procedure.
The process was repeated 100 times, and for each fit the
standard deviation between the fit and the original data was
calculated. Fit results were sorted in order of increasing
standard deviations, and averages and standard deviations
were calculated for the peak position (Bh), distribution
width (Dp) and magnitude (M) of the distribution using the
20 best fits.

[23] Our simple mixing models do not consider magnetic
interactions, which may lower ARM values [e.g., Yamazaki
and Ioka, 1997] or skew the coercivity distribution as
observed for some samples by Eg/i [2003] and theoretically
confirmed by Heslop et al. [2004]. However, for most
natural samples magnetic interactions are likely to play a
minor role as overall concentrations of strongly magnetic
minerals are low and the particles are generally well
dispersed [Egli, 2004]. This is likely true for the soils
analyzed in this study. ARM/IRM ratios are highest in the
magnetically enhanced horizons, where the concentration of
ferrimagnetic grains and potential for magnetic interactions
are highest. Furthermore, our modeling of ARM/IRM ratios
requires only one set of ARM acquisition efficiencies (see
Figure 2) to describe ARM/IRM ratios for soil and loess
samples displaying a wide range of magnetic susceptibility
and remanence values. A comparison of our CLG fits with
similar analyses that allow for skewed coercivity distribu-
tions [Egli, 2004] on Chinese modern and buried soils
yields very similar distribution parameters, thus justifying
our simplified approach.

3. Results and Discussion
3.1. ARM/IRM Ratios

[24] We applied our two-component mixing model to
ARM and IRM data measured for eleven loessic soil
profiles from the midwestern United States. The observed
increases in IRM as well as ARM/IRM ratios require only
relatively small additions of fine-grained material (varying
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Table 1. Acquisition Efficiencies Used in ARM/IRM Two-
Component Mixing Model

Acquisition Efficiency Numerical Value

Qlamd 0.0008
Qlimd 0.08
Qasd 0.05
Qisd 0.5

from 2 to 10 vol % of the ferrimagnetic component) to the
magnetically enhanced soil horizons. The tables in
Figures 3—6 list the modeling results for four selected sites
from our transect (fyeg ARM/IRM). All ARM/IRM mixing
models utilized the same set of acquisition efficiencies listed
in Table 1.

[25] Since the pedogenic component is always seen
against a background of magnetic material inherited from
the parent material it is more useful to express the amount of
pedogenic material (f,eq) as a fraction of the ferrimagnetic
minerals present in sample rather than normalizing it by the
volume or mass of the entire sample. Throughout this paper
all pedogenic fractions f,.q Will therefore be calculated as a
fraction of the ferrimagnetic component.

[26] Figure 2 shows Jg values simulated through our
model for all analyzed sites and compares them to Jg values
obtained from hysteresis measurements. It is remarkable
that one set of acquisition efficiencies (Table 1) does a
reasonable job explaining ARM/IRM ratios across our
entire transect of sites, even though the studied soil profiles
developed under a steep precipitation gradient (<500 mm/yr
in SW Nebraska to ~1000 mm/yr in central Missouri). Our
model results suggest a single, rather homogenous pedo-
genic phase responsible for the magnetic enhancement
observed at all sites.

3.2. IRM Demagnetization Curves

[27] The presence of a homogenous pedogenic phase is
confirmed by our analysis of magnetic coercivity spectra
(Figures 3a, 3b, 4a, 4b, 5a, 5b, 6a, and 6b). We measured
coercivity spectra for samples from five modern soil pro-
files, and the spectra were analyzed by fitting the data to
two or three CLG distributions. Our analysis showed that a
two-component model fits most spectra and that a three
component fit offers only slight improvements in fit quality,
while producing many unrealistic solutions (negative values
of M, extremely narrow distributions that focus on one or
two noisy data points). Since the remaining analyses pre-
sented in this study infer two-component mixing models we
chose to focus our analyses on the results of a two-
component CLG mix.

[28] Figures 3a, 4a, 5a, and 6a show the results of our
analyses for four soil profiles. The coercivity distributions
for selected samples are plotted as a function of depth,
according to their position in the soil profile. The topmost
curve shows the measured coercivity data (solid circles), the
two modeled coercivity distributions (dashed curve, solid
curve) as well as the sum of the two distributions (shaded
curve). For clarity only the two coercivity distributions
(dashed curve, solid curve) are shown for the remaining
samples of the soil profile. To facilitate comparison between
samples, all distributions are plotted using the same scale
(AIRM/Alog B, where IRM is measured in A m*/kg and B
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Figure 7. Summary of CLG parameters for pedogenic and background components for soil profiles
shown in Figures 3—6. Magnetically enhanced profiles are denoted by solid circles, samples from the
parent material are shown with open circles. Distribution values are listed in Table 2. Bh is measured

in mT.

is given in mT) which is indicated for the topmost sample
and is kept constant for Figures 3—6.

[20] The CLG components shown in Figures 3—6a rep-
resent the best fit to the measured coercivity data, without
any constraints on M, Bh, or Dp (with the exception of
requiring M > 0). Close inspection of the distributions
shows that the magnetically enhanced samples (near the
top of the profile and characterized by higher ARM/IRM
ratios (see Figures 3—6d) show an increased abundance of a
medium coercivity component (solid curve) centered
around fields of 20 mT (log Bh = 1.28—1.33) with relatively
narrow distribution widths (Dp = 0.25—-0.38). This compo-
nent is superimposed onto a variable background compo-
nent (dashed curve). The magnetic properties of this
medium coercivity component are remarkably similar
throughout our study area. Figure 7 displays its distribution
properties log Bh and Dp (solid circles) as well as the
distribution properties of the background component (open
circles). The presence of this component in all magnetically
enhanced soil horizons and its relatively minor role in the
unaltered lower soil horizons suggests that this component
is of pedogenic origin.

[30] Similar analyses of ARM and IRM demagnetization
curves of Chinese and Swiss soils which use generalized
probability density functions [Egli, 2004] yield coercivity
distributions for the pedogenic component with very similar
distribution properties (log Bh = 1.2—1.4, Dp = 0.25-0.4).
Evans and Heller [1994] measured IRM demagnetization
curves for several loess/paleosol couples and isolated a

pedogenic component with median destructive fields of
about 20 mT, very similar to the results obtained by Egli
and our study. These similar magnetic properties argue for a
common origin of this pedogenic component in the loessic
soils of our study area, even though climatic conditions and
corresponding biota, two of Jenny’s [1941] soil forming
factors, vary widely from shortgrass prairie in SW Nebraska
to tallgrass prairie/forest parkland toward the moister end of
our transect in central Missouri.

[31] Assigning a pedogenic origin to this component
and using the remanence acquisition efficiencies listed in
Table 1 we can estimate the abundance of the pedogenic
component:

Mpcd/ Qlisd
Mped/aisd + Mbackground/aimd

fped (5)

Here M;eq and Mpgckeround are the remanence contributions
due to the pedogenic and background components,
respectively. The results of these estimates are shown in
the tables associated with Figures 3—6 (f,.q unconstrained
CLG). The increases in ARM/IRM are mirrored by elevated
values of f,.q, however, largely to larger changes in the
background component (dashed curve). f.q values, which
track relative changes, do not decrease consistently in the
unaltered parent material.

[32] Except for requiring positive values for M, the
distribution parameters used in the CLG fits shown in
Figures 3—6a are not constrained in any way. This is
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different from the two-component mixing models used to
interpret ARM, IRM, and hysteresis data, where only
mixtures of two distinct magnetic end-members are consid-
ered. To compare our analyses of IRM demagnetization
curves to these models, we next consider two-component
mixtures for the analysis of coercivity distributions. Table 2
shows the CLG parameters for the pedogenic and back-
ground components for all measured samples from sites
Miriam Cemetery (MIR 04-A), Prairie Pines (PRA 02-A),
Mount Calvary Cemetery (MTC 03-A), and Honey Creek
Conservation Area (HON 03-A). To estimate Bh and Dp for
the pedogenic component, we averaged Bh and Dp values
of for the pedogenic component using data from magneti-
cally enhanced horizons only. Bh and Dp values of the
background component were obtained by averaging over all
samples from one site. The samples used for the averaging
process are indicated in bold in Table 2. We then reanalyzed
all coercivity data using the average distribution parameters
of the pedogenic and background component, leaving Mp,eq
and Mpackeround as the only free variables. The results of
these two-component fits are shown in Figures 3—6b (solid
curve). To compare the quality of the fit, we also show the
result of the previous unconstrained fits for all samples
(shaded curve, not shown in Figures 3—6a). For clarity we
only show the sum of the two components, but it is clear
that the constrained two-component fit still provides a good
approximation of the measured coercivity data (solid
circles) as for many samples both fits plot almost on top
of each other.

[33] The resulting abundances of the pedogenic compo-
nent are listed in the tables in Figures 3—6 (f,eq constrained
CLG) and can be compared to the mixing results from the
ARM/IRM analyses (f,ea ARM/IRM). Comparing the
results of the two models reveals that our analysis of IRM
demagnetization curves yields consistently higher estimates
of the pedogenic component, but the results of the two
analyses correlate well with each other as shown in Figure 8.
The observed discrepancies are not surprising as the two
techniques are likely to respond to slightly different grain
size/coercivity fractions. While increased ARM/IRM ratios
are indicative of particles spanning a relatively small grain
size range (see summary by Hunt et al. [1995a, Figure 15]),
the pedogenic component obtained from CLG analyses is
likely to represent a broader grain size distribution, thus
resulting in larger estimates for the abundance of pedogenic
magnetic minerals.

3.3. Hysteresis Data

[34] Hysteresis data, when plotted on a Day diagram
[Day et al., 1977], follow a grain size trend that is consistent
with our analyses of remanence data. Figure 9 shows a
series of coercivity spectra from Mount Calvary Cemetery
(and their fitted CLG components) superimposed on a Day
diagram, where the position of the coercivity spectrum
(approximately) corresponds to the position of the sample
on the Day diagram. The graph also lists the abundance
estimates for the pedogenic component (fy.q (constrained
CLQG) from Figure 5), and samples with high abundances of
fine-grained pedogenic particles tend to plot closer to the
fine-grained SD field of the Day diagram. Despite a good
mixing model [Dunlop, 2002a] that aids in the interpretation
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Table 2. CLG Distribution Parameters for Samples Shown in
Figures 3a—6a®

Pedogenic Component Background
Depth,cm log Bh Dp log Bh Dp
Miriam Cemetery
10 1.32 0.31 1.14 0.63
20 1.35 0.31 1.07 0.64
30 1.38 0.32 1.17 0.56
40 1.32 0.36 1.02 0.74
50 1.31 0.33 1.18 0.64
60 1.32 0.30 1.22 0.59
70 1.29 0.35 1.16 0.68
80 1.30 0.32 1.20 0.62
90 1.26 0.34 1.20 0.64
100 1.29 0.34 1.18 0.64
120 1.25 0.38 1.19 0.70
160 1.26 0.39 1.20 0.78
180 1.23 0.43 1.14 0.85
Average 1.32+0.02 0.31 +0.02 1.17 + 0.08 0.66 + 0.08
Prairie Pines
5 1.35 0.32 1.11 0.66
10 1.38 0.31 1.20 0.58
15 1.33 0.34 1.14 0.68
25 1.34 0.35 1.15 0.63
35 1.38 0.31 1.21 0.57
55 1.40 0.33 1.20 0.60
75 1.44 0.29 1.23 0.56
90 1.40 0.34 1.19 0.61
115 1.34 0.44 1.10 0.67
155 1.37 0.32 1.21 0.63
Average 1.35 £ 0.01 0.33 +0.01 1.18 £ 0.03 0.62 +0.02
Mount Calvary Cemetery
10 1.34 0.29 1.10 0.65
20 1.31 0.32 0.98 0.86
30 1.29 0.30 1.13 0.72
40 1.33 0.30 1.14 0.66
50 135 0.29 1.17 0.64
60 1.32 0.38 1.07 0.76
70 1.37 0.31 1.15 0.63
80 1.36 0.34 1.13 0.67
90 1.35 0.40 1.12 0.73
100 1.41 0.30 1.23 0.59
120 1.40 0.31 1.25 0.56
140 1.37 0.39 1.22 0.63
160 1.51 0.21 1.27 0.54
180 1.40 0.22 1.27 0.60
200 1.36 0.26 1.26 0.59
Average 1.32+0.02 0.31 +0.02 1.17 + 0.08 0.66 + 0.08
Honey Creek Conservation Area
5 1.38 0.28 1.16 0.57
15 1.33 0.33 1.17 0.64
35 1.35 0.26 1.19 0.57
55 1.34 0.32 1.16 0.61
75 1.38 0.33 1.19 0.60
95 1.42 0.38 1.15 0.60
115 1.40 0.44 0.88 0.59
135 1.43 0.37 1.19 0.60
160 1.38 0.45 0.71 0.45
200 1.35 0.46 0.75 0.69
Average 1.36 £ 0.01 0.30 + 0.02 1.2+£0.2 0.59 + 0.06

“Bold values indicate samples used for the averaging process.

of the hysteresis data a quantitative interpretation of these
data is difficult because:

[35] 1. In addition to the presence of fine SD and coarse
MD particles, the position of a sample on the Day diagram
is influenced by the presence of ultrafine SP particles, and
changes in magnetic mineralogy.
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Figure 8. Comparison of abundance estimates of the pedogenic component obtained from constrained
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higher abundances obtained from CLG analyses, but otherwise good correlation between the two
estimates suggest that these analyses are sensitive to a wider range of particles. All pedogenic abundances
(fpea) are calculated as a fraction of the total remanence carrying ferrimagnetic component.
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Figure 9. Coercivity spectra for several samples from site MTC 03-A superimposed on a Day diagram.
Sample depths are given in bold numbers; also added are abundance estimates of the pedogenic
component (from Figure 5). The vertical scale in the coercivity spectra varies from sample to sample to
highlight the relative abundances of the two coercivity components, rather than their absolute
abundances, which do not influence the position of the sample on the day diagram.
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Figure 10. Effects of CBD treatment on a magnetically enhanced sample (MTC 03-A 15-25 cm, solid
circles) and a sample from the unaltered parent material (MTC 03-A 230-250 cm, open circles).
Successive removal of fine grains and maghemite leads to an initial move toward the SD field, followed
by a move toward the MD field in the Day diagram. A sample from the parent material has very low
initial concentrations of fine-grained SP and SD material and is little affected by CBD treatment.
Frequency-dependent susceptibility values (in %) are shown for all samples from MTC 03-A 15-25 cm.

[36] 2. In order to arrive at quantitative estimates of the
pedogenic component it is necessary to know the mag-
netic properties of the fine- and coarse-grained magnetic
end-members.

[37] Figure 10 demonstrates the effects of SP particles,
and probably the effects of maghemitization on the position
of a sample in the Day plot. Two samples from site MTC
03-A were subjected to successive CBD dissolution treat-
ments [Hunt et al., 1995b; Mehra and Jackson, 1960] which
progressively remove maghemite as well as the SP and SD
component of a sample. A sample from the magnetically
enhanced horizon (MTC 03-A 15-25 cm, solid circles)
shows an initial move toward the SD field of the Day
diagram, which can be interpreted as the progressive re-
moval of SP particles during the initial stages of the CBD
treatment, and a subsequent move toward the MD field as
SD and then coarser particles are dissolved. In contrast, the
position of a sample from the unaltered parent material
(MTC 03-A 230-250 cm, open circles) which starts out
with a low abundance of fine grained SP and SD material is
little affected by the successive treatment steps.

[38] Measurements of xrp, however, do not confirm this
simple SP-SD-MD mixing model. xpp values (in percent)

for each CBD-treated sample from the magnetically en-
hanced horizon are shown in Figure 10. The untreated
sample shows relatively high xgp (7.3 = 0.8%), but initial
CBD treatment increases ygp to 10.3 +2.8%, suggesting an
increase in SP particles. We are somewhat puzzled by the
discrepancy between the hysteresis and xpp results. Prefer-
ential removal of maghemite coatings might decrease the
internal stresses caused by partial oxidation, lower H. and
lead to shorter relaxation times 7 which in turn would affect
both the position of the samples on the Day plot as well as
Xrp- Similar puzzling results due to CBD treatment have
been reported by Sun et al. [1995], who observed enhanced
Hopkinson peaks when measuring Curie temperatures of
CBD-treated samples. In any case, our results serve to
underscore the complexity of the Day plot and the differ-
ences associated with its quantitative interpretation.

[39] Careful analyses of loessic soil profiles from the
midwestern United States, which include measurements of
xrp [Geiss et al., 2004] and time-dependent IRM acquisi-
tion (Machac et al., submitted manuscript, 2006) show that
the magnetically enhanced horizons contain mixtures of
both SP and SD material, so a simple binary SD-MD mixing
model is likely to underestimate the fine grained magnetic
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Figure 11. Effects of high-coercivity (antiferrimagnetic) minerals on hysteresis properties. Samples

from the upper soil horizons fall on a SD-MD mixing line, but additions of a high-coercivity magnetic
phase cause deeper samples to deviate from this line, making it possible to confuse mineralogical changes

with changes in grain size.

fraction, even if the hysteresis properties of the end-members
were known.

[40] Figure 11 shows a series of coercivity spectra super-
imposed on a Day diagram, similar to the ones shown in
Figure 9 from Davisdale Conservation Area, Missouri.
Samples from the upper soil horizons follow a SD-MD
mixing line, similar to the samples shown in Figure 9.
Samples from lower soil horizons, however, move off this
mixing line due to the addition of a high-coercivity phase,
which is clearly seen in the coercivity spectra. This change
in mineralogy may easily be mistaken as an addition of SP
material to the C horizon, because in the absence of samples
with intermediate admixtures of antiferrimagnetic minerals
(or measured coercivity spectra) the hematite or goethite-
rich end-members fall closely onto SD-SP mixing lines
derived by Dunlop [2002b]. A detailed soil description of
this site shows that the mineralogical changes in these lower
samples are linked to the presence of redoximorphic fea-
tures which are likely due to seasonal fluctuations in the
water table in this shallow loess deposit.

[41] To further characterize the nature of this high-
coercivity phase, we employed a series of alternating field
(AF) and thermal demagnetization steps as suggested by
Carter-Stiglitz et al. [2006] (Figure 12). To qualitatively
distinguish between hematite and goethite, the sample is
first magnetized at room temperature in a magnetic field of

5 T. The remanence contributions of magnetite and other
low-coercivity ferrimagnetic minerals are then removed by
demagnetizing the sample in an alternating magnetic field
(peak field of 200 mT). Figure 12a shows a schematic
representation of the subsequent thermal demagnetization
procedure. Starting from room temperature the sample is
first cooled through the Morin transition which removes
remanence contributions due to hematite (feature 1 in
thermal demagnetization curve shown in Figure 12a). Fur-
ther cooling down to 20 K is used to test for the presence of
goethite. The gain in remanence with decreasing tempera-
ture (feature 2 in Figure 12a) is a qualitative proxy for the
presence of goethite [Dekkers, 1989]. Warming the sample
through the Néel temperature of goethite up to 400 K
(feature 3 in Figure 12a) removes (most) remanence
contributions due to goethite. Final cooling (feature 4 in
Figure 12a) to 20 K checks the efficiency of the two
demagnetization procedures.

[42] Low-temperature analyses of six samples from
Davisdale Conservation Area show that samples again fall
into two groups. Samples following the PSD-MD mixing
line in Figure 11 show low-temperature properties similar to
the upper, solid curve in Figure 12b. Here the antiferro-
magnetic component consists of a mixture of hematite
(small loss of remanence through the Morin transition)
and goethite (marked gain in remanence with decreasing
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Figure 12. Thermal demagnetization curves to characterize the mineralogy of the antiferromagnetic
component after Carter-Stiglitz et al. [2006]. (a) Idealized demagnetization curve describing the features
used for mineral identification. Circled 1—4 are referred to in the text. (b) Two thermal demagnetization
curves for Davisdale Conservation area. For further information, see text.

temperature, drop in remanence upon heating above 300 K).
Samples that drift away from this mixing line have low-
temperature characteristics similar to the lower, dashed
curve in Figure 12b. The antiferromagnetic component of
these samples is devoid of hematite and consists mainly of
goethite.

[43] It should be noted that a quantitative interpretation of
Figure 12 is difficult without further analyses. Poorly
crystalline or ion substituted hematite may not be completely
demagnetized through the Morin transition, and it is obvi-
ous from the rise in magnetic remanence during final
cooling that goethite was only partially demagnetized when

heated above its Néel temperature of 120 K [Ozdemir and
Dunlop, 1996]. However, the remaining remanence is small
(6%), compared to IRM acquired at 100 mT (see Table 3)
for samples dominated by low-coercivity ferrimagnets and
increases down core (up to 23%).The remaining SIRM is
unlikely due to significant amounts of ferrimagnetic miner-
als with coercivities above 200 mT. Comparing IRM
acquired at 100 mT (a measure of low-coercivity ferrimag-
netic minerals) and SIRM (acquired at 5 T) after AF
demagnetization (a measure of the remaining high-coerciv-
ity antiferromagnets) shows a relative increase in antiferro-

Table 3. Remanence Properties for Selected Samples From Davisdale, California

Depth, IRM00 mT SIRM5 T Hard SIRM;s 1 Remaining
cm A m’/kg (After AFD), A m*/kg IRM/Soft IRM (After AFD and LTD), A m*/kg Percent
15-20 3.73 x 1073 265 x 1074 0.07 235 x 1074 6.3
35-40 2.88 x 1073 211 x 1074 0.07 1.78 x 107* 6.2
75-80 207 x 1073 1.83 x 107* 0.09 142 x 1074 6.9
115-120 1.16 x 1073 148 x 107* 0.13 120 x 107* 10.4
230-240 6.68 x 1074 133 x 1074 0.20 1.14 x 107* 17.1
310-320 433 x 1074 115 x 1074 0.27 9.97 x 10°° 23.0

15 of 19



B12S21

0.14

0.12

0.08

0.06 ' : : :

GEISS AND ZANNER: ABUNDANCE OF PEDOGENIC MAGNETITE

B12S21

T T T T T 1
4.5 5 5.5

BCI’ / BC

Figure 13. Hysteresis properties of selected sites with only small changes in magnetic mineralogy
within the soil profile. Samples from magnetically enhanced horizons are shown as solid symbols.
Samples from the parent material are shown as open symbols. All samples fall closely onto a PSD-MD
mixing line (shaded curve). The hysteresis properties of the two end-members are given in Table 4.

magnetic minerals (Table 3) that is qualitatively consistent
with the coercivity spectra shown in Figure 11.

[44] Despite these limitations, Figure 13 shows that
samples from sites without significant changes in high-
coercivity mineral concentrations fall closely onto a SD-
MD (or PSD-MD) mixing line, and it is possible to roughly
constrain the abundance of fine-grained pedogenic material
from hysteresis data. Magnetically enhanced samples (solid
circle), in general, plot closer to the SD part of the diagram
than samples from the parent material (open circle). The
overlap between magnetically enhanced and unenhanced
samples is due to site specific differences in the original
parent material and varying degree of magnetic enhance-
ment between sites. Our analysis of coercivity spectra
shows that all samples, even samples from the C horizon,
contain varying amounts of fine-grained pedogenic material,
either because it was contained within the unaltered loess
deposits or due to low level pedogenesis during loess
deposition. Since the hysteresis properties of the back-
ground component are unknown we anchor our mixing line
at the most MD-like sample of the entire distribution and
assume a PSD pedogenic end-member to fit the general
sample trend. The hysteresis properties of both end-
members are listed in Table 4. Keeping the position of both
end-members the same for all sites is justified by our
previous findings of a pedogenic component with relatively
homogenous magnetic properties and allows for the initial
presence of fine grained magnetite in the parent material. By
determining the position of a sample along the mixing line

shown in Figure 13 we can estimate the relative increase of
fine-grained material in the magnetically enhanced horizons
and compare it to estimates derived earlier. These estimates
are listed in the tables contained in Figures 3—6 (fyeq
hysteresis).

3.4. Abundance of the Pedogenic Component

[45] The tables in Figures 3—6 list our relative abun-
dance estimates of pedogenic magnetite based on three
different two-end-member models and one unconstrained
CLG fitting algorithm. Since our CLG fitting algorithm
does not delineate a pedogenic component per se (this
interpretation is based on the analysis of all IRM demag-
netization curves from a soil profile), we only compare the
abundance estimates from models with two constrained
end-members.

[46] All three techniques show the same general grain
size trends. Magnetically enhanced samples are character-
ized by an addition of finer grained pedogenic material. Our
estimates of the absolute amount depends mainly on the
technique used for the estimate. This is not surprising, since
all three methods are sensitive to slightly different grain size

Table 4. Assumed Hysteresis Properties for Pedogenic and
Background Fractions

Bcr/Bc Jrs/]s
Pedogenic component 1.43 0.34
Background component 52 0.075
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or coercivity ranges. Evaluating ARM and IRM values is
probably the best predictor for the abundance of SD
particles, while the interpretation of IRM demagnetization
curves is likely to be sensitive to a wider range of particles
(SD-PSD). Our analysis of hysteresis data suffered from
lack of knowledge regarding the hysteresis properties of the
pedogenic end-member. The choice of one set of end-
members for all sites likely leads to an overestimation of
the pedogenic component, which might be partially offset
by the presence of SP particles in the magnetically enhanced
horizons. This is especially true for sites whose parent
material plots relatively far away from the MD field.

[47] While absolute abundance estimates may vary widely
among techniques, relative changes in abundance are re-
markably consistent between techniques. Estimates for the
relative increase in abundance ranges from 2—3% of the
ferrimagnetic component for Miriam Cemetery, 2—4%
for Prairie Pines, 6—8% for Mount Calvary Cemetery, and
3-6% for Honey Creek Conservation Area. Therefore
relatively small additions of pedogenic magnetite (or
maghemite) of about 5% can explain the observed changes
in concentration and grain-size-dependent parameters.

[48] Evans and Heller [1994] estimate the abundance of
ferrimagnetic minerals (magnetite and maghemite) in Chi-
nese loess to be approximately 0.05%, which rises to 0.2%
in the strongly developed S3 paleosol at Baoji. A study of a
loess/paleosol sequence from the central Chinese loess
plateau by Spassov et al. [2003] finds that slightly oxidized
pedogenic magnetite contributes approximately 2/3 of the
IRM in paleosols. In loess, 90% of the IRM signal is due to
detrital magnetite with hematite contributing most of the
remaining 10%. Loess from the midwestern United States
contains similar amounts of ferrimagnets (0.04—0.06%), but
modern soils are far less magnetic. The best developed soils
analyzed in our study, which developed in relatively weakly
magnetized loess along the Missouri loess bluffs, contain up
to 0.07% of ferrimagnetic material. The contribution of
pedogenic magnetite to IRM ranges between 40% and
55% which is slightly less but comparable to the pedogenic
contributions reported by [Spassov et al., 2003].

3.5. Size Distribution of the Pedogenic Component

[49] Our study of three grain size proxies confirms the
fine-grained nature of the pedogenic magnetic component
which straddles the SP-SD grain size boundary. Since our
analyses are limited to measurements of magnetic rema-
nence our data suggest that a large fraction of the pedogenic
component consists of SD-sized ferrimagnetic minerals
(magnetite of maghemite), but our choice of remanence
parameters (lower aagp than originally expected), neces-
sary to fit the observed data, suggests a somewhat wider
grain size range. This interpretation is confirmed by anal-
yses of coercivity spectra. The coercivity distribution of the
pedogenic component is similar to the coercivity distribu-
tion of synthetic Wright-4000 magnetite (now likely to be
partially oxidized to maghemite) with an average particle
diameter of approximately 0.05 pm (O. Ozdemir, personal
communication, 1998).

[s0] On the basis of the tight clustering of data on a Day
diagram, Dunlop [2002b] suggests that there is little evi-
dence for a significant SP contribution to the pedogenic
component of Chinese paleosols. This is not the case for the
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modern soils studied here. Soil samples from the midwest-
ern United States fall into a region of the Day plot where
they are fitted equally well by mixtures of (P)SD and MD,
or (P)SD and SP particles. However, rock magnetic studies
[Geiss et al., 2004; Machac et al., submitted manuscript,
2006] show the presence of SP particles or particles
straddling the SP-SD grain size boundary which is consis-
tent with previous findings from loess/paleosol sequences
worldwide [e.g., Banerjee et al., 1993; Forster et al., 1994;
Liu et al., 2005; Maher and Taylor, 1988; Maher and
Thompson, 1991; Ozdemir and Banerjee, 1982; Zhou et
al., 1990]. The relatively tight cluster of hysteresis data for
magnetically enhanced samples is more likely caused by
similar grain size distributions within the pedogenic com-
ponent rather than the absence of a SP component.

[5s1] Perhaps the most surprising result of our study is the
uniformity of the pedogenic component throughout our
study area. All our sites have been chosen for their uniform
parent material (Peoria loess), similar landscape position
(stable uplands) and age (Holocene), but climatic conditions
and vegetation cover vary significantly across our transect.
Pedogenic components with relatively uniform magnetic
properties have been reported previously for the Chinese
loess plateau [Evans and Heller, 1994; Eyre and Shaw,
1994, Egli, 2004] and loess sequences in Hungary and
Tajikistan [Forster and Heller, 1997]. However, Peoria
loess is derived from several different sources [Muhs and
Bettis, 2000] with varying magnetic properties and it is
reasonable to assume that the difference in parent material
influences the magnetic properties of the pedogenic com-
ponent at least to some degree. However, the magnetic
properties of the pedogenic component can be described
reasonably well through one set of remanence acquisition
efficiencies (Figure 2) or a very narrow set of CLG
distribution parameters (Figure 7).

[52] This uniformity of the pedogenic magnetic compo-
nent found in loessic soils from several sites around the
world is strongly suggestive of a common enhancement
mechanism for these sites. Ultrafine magnetite has been
synthesized under soil-like conditions by Taylor et al.
[1987], but uniform grain size distributions require tight
control of experimental conditions. Formation of pedogenic
magnetite then either occurs under a very limited set of soil
conditions which is unlikely given the wide range of
climatic regimes under which these soils form, or the
conditions of pedogenic magnetite formation are, directly
or indirectly, controlled by biological activity. Evans and
Heller [1994] recognized the similarity between pedogenic
magnetite and fossil magnetosomes reported by Petersen et
al. [1986]. Fassbinder et al. [1990] found such bacteria in a
Bavarian wetland soil, but magnetotactic bacteria are rarely
detected [Dearing et al., 2001] in the well-drained soils that
show significant amounts of magnetic enhancement and are
preferred for paleoclimatic reconstruction. Liu et al. [2005]
point out that intracellularly produced magnetite crystals are
unlikely to result in the observed distribution of grain sizes,
but the formation of SP-sized particles could be due to the
conversion of poorly crystalline iron phases into highly
magnetic ferrimagnets mediated by dissimilatory iron-
reducing bacteria [Maher and Thompson, 1999]. In a recent
study, Guyodo et al. [2006] were able to correlate magnet-
ically enhanced soil horizons with higher microbial bio-
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mass, but failed to detect a common group of dissimilatory
iron-reducing bacteria (Geobacteraceae). Nevertheless, in
our opinion a biologically mediated origin of the pedogenic
magnetic component is highly likely.

[53] There is evidence [Jacobs and Mason, 2005] that
some of the thick A horizons observed in Peoria loess are
due to the incorporation of Holocene loess into the modern
soil profile. In theory, the addition of magnetically homog-
enous loess into the soil profile could cause a magnetic
signal similar to the one described in this study. It should be
noted, however, that the magnetic properties of the (rela-
tively) unaltered Peoria loess, which was likely deposited
under much more homogenous conditions than the later
Holocene additions, has a much more diverse magnetic
signal than the pedogenic component extracted in our study.
We therefore think that this magnetic component is truly
pedogenic, rather than due to the incorporation of younger
loess into the soil profile.

4. Conclusions

[54] Our analysis of modern loessic soil profiles from the
midwestern United States yielded the following results.

[s5] 1. Relatively small amounts of fine-grained ferrimag-
netic material can explain the concentration- and grain-size-
dependent properties of the magnetically enhanced soil
horizons. Our estimates of the amount of pedogenic material
varied based on the magnetic proxies used, but in general,
all sites required an addition of less than 10% (by volume)
of fine (mostly SD sized) magnetite or maghemite. Esti-
mates based on ARM and IRM values required the smallest
amount of pedogenic material, while estimates based on
hysteresis properties depended strongly on the chosen
model parameters. The systematic differences are due to
varying grain size sensitivities amongst the used proxies.

[s6] 2. While the abundance of pedogenic magnetite
increases roughly with mean annual precipitation [Geiss
and Zanner, 2006] its magnetic characteristics remain nearly
constant. ARM/IRM ratios for all sites can be reconstructed
using one set of remanence acquisition efficiencies, CLG
analyses of IRM demagnetization curves extract a pedogenic
component with a narrow range of distribution parameters,
and hysteresis data from sites unaffected by gleying and
seasonably high water tables plot closely on one (P)SD-MD
mixing line. The similarity of the pedogenic component
argues strongly for one magnetic enhancement process
acting over a wide range of precipitation conditions (mean
annual precipitation 440—1000 mm/yr).

[571 3. Our interpretations of grain-size-dependent mag-
netic proxies are consistent with a pedogenic component
consisting of a mixture of SP, SD, and possibly PSD
particles. This includes hysteresis data, whose interpretation
is complicated by the opposing effects of SP and SD
particles, as well as changes in mineralogy, on the position
of a sample on the Day diagram.
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